Nuclear Energy

Practice Problem Solutions

Student Textbook page 925

1. Conceptualize the Problem

- Mass defect is the difference between the total mass of the reactants and the total mass of the fission products.
- The energy released is the energy equivalent of the mass defect.

Identify the Goal

The mass loss, Δm, and the amount of energy released, E, in the reaction
Data
${ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{38}^{90} \mathrm{Sr}+{ }_{54}^{135} \mathrm{Xe}+11{ }_{0}^{1} \mathrm{n}$

Particle	Mass (u)
${ }_{0}^{1} \mathrm{n}$	1.008665
92${ }_{92}^{235} \mathrm{U}$	234.993
90 ${ }_{38} \mathrm{Sr}$	89.886
${ }_{54}^{135} \mathrm{Xe}$	134.879

Identify the Variables

Known
A, Z and m for all particles

Develop a Strategy

Find the total mass of reactants.

Find the total mass of the products.

Implied
$c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Unknown
Δm
E

Calculations

$m_{\text {neutron }}=1.008665 \mathrm{u}$
$m\left({ }_{92}^{235} \mathrm{U}\right)=234.993 \mathrm{u}$
$m_{\text {reactants }}=1.008665 \mathrm{u}+234.993 \mathrm{u}$
$m_{\text {reactants }}=236.002 \mathrm{u}$
$m\left({ }_{38}^{90} \mathrm{Sr}\right)=89.886 \mathrm{u}$
$m\left({ }_{54}^{135} \mathrm{Xe}\right)=134.879 \mathrm{u}$
$m_{11 \text { neutrons }}=11 \times 1.008665 \mathrm{u}$
$m_{11 \text { neutrons }}=11.095 \mathrm{u}$
$m_{\text {products }}=89.886+134.879 \mathrm{u}+11.095 \mathrm{u}$
$m_{\text {products }}=235.8603 \mathrm{u}$

Find the mass defect, or mass lost, by subtraction.

Convert the mass defect into kilograms.

$$
\begin{aligned}
& \Delta m=m_{\text {reactants }}-m_{\text {products }} \\
& \Delta m=236.002 \mathrm{u}-235.860 \mathrm{u} \\
& \Delta m=0.141685 \mathrm{u} \\
& \Delta m \cong 0.14168 \mathrm{u} \\
& \Delta m=(0.141685 \mathrm{u})\left(1.6605 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right) \\
& \Delta m=2.35268 \times 10^{-28} \mathrm{~kg} \\
& \Delta m \cong 2.3527 \times 10^{-28} \mathrm{~kg}
\end{aligned}
$$

The mass lost in the reaction is 0.14168 u , or $2.3527 \times 10^{-28} \mathrm{~kg}$.

Convert the mass into energy, using $\Delta E=\Delta m c^{2}$.

$$
\begin{aligned}
& \Delta E=\Delta m c^{2} \\
& \Delta E=\left(2.3527 \times 10^{-28} \mathrm{~kg}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2} \\
& \Delta E=2.11459 \times 10^{-11} \mathrm{~J} \\
& \Delta E \cong 2.114 \times 10^{-11} \mathrm{~J}
\end{aligned}
$$

The energy released in the reaction is $2.114 \times 10^{-11} \mathrm{~J}$.

Validate the Solution

The amount of energy released in this fission reaction is similar to the amount released in the reaction in the sample problem, so the solution is reasonable.

2. Conceptualize the Problem

- Mass defect is the difference between the total mass of the reactants and the total mass of the fission products.
- The energy released is the energy equivalent of the mass defect.

Identify the Goal

The amount of energy released, E, in the reaction

Data

${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$

Particle	Mass (u)
${ }_{1}^{2} \mathrm{H}$	2.013553
${ }_{1}^{3} \mathrm{H}$	3.015500
${ }_{2}^{4} \mathrm{He}$	4.001506
${ }_{0}^{1} \mathrm{n}$	1.008665

Identify the Variables

Known	Implied	Unknown
A, Z and m for all particles	$c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$	Δm
		E

Develop a Strategy

Find the total mass of reactants.

Calculations

$$
\begin{aligned}
& m\left({ }_{1}^{2} \mathrm{H}\right)=2.013553 \mathrm{u} \\
& m\left({ }_{1}^{3} \mathrm{H}\right)=3.015500 \mathrm{u} \\
& m_{\text {reactants }}=2.013553 \mathrm{u}+3.015500 \mathrm{u} \\
& m_{\text {reactants }}=5.029053 \mathrm{u}
\end{aligned}
$$

Find the total mass of the products.

Find the mass defect, or mass lost, by subtraction.

$$
\begin{aligned}
& m\left({ }_{2}^{4} \mathrm{He}\right)=4.001506 \mathrm{u} \\
& m_{\text {neutron }}=1.008665 \mathrm{u} \\
& m_{\text {products }}=4.001506 \mathrm{u}+1.008665 \mathrm{u} \\
& m_{\text {products }}=5.010171 \mathrm{u}
\end{aligned}
$$

$\Delta m=m_{\text {reactants }}-m_{\text {products }}$
$\Delta m=5.029053 \mathrm{u}-5.010171 \mathrm{u}$

$$
\Delta m=0.018882 \mathrm{u}
$$

Convert the mass defect into kilograms.

$$
\begin{aligned}
& \Delta m=(0.018882 \mathrm{u})\left(1.6605 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right) \\
& \Delta m=3.13535 \times 10^{-29} \mathrm{~kg}
\end{aligned}
$$

Convert the mass into energy, using $\Delta E=\Delta m c^{2}$.

$$
\Delta E=\Delta m c^{2}
$$

$$
\Delta E=\left(3.13535 \times 10^{-29} \mathrm{~kg}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}
$$

$$
\Delta E=2.818059 \times 10^{-12} \mathrm{~J}
$$

$$
\Delta E \cong 2.818 \times 10^{-12} \mathrm{~J}
$$

The energy released in the reaction is $2.818 \times 10^{-12} \mathrm{~J}$.

Validate the Solution
The mass defect is positive, indicating an energy release.

3. Conceptualize the Problem

- Mass defect is the difference between the total mass of the reactants and the total mass of the fission products.
- The energy released is the energy equivalent of the mass defect.

Identify the Goal
(a) The mass defect, Δm, for the reaction and the energy produced, E
(b) The energy released, E, by the production of 1.00 g of helium

Data
$4{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+2{ }_{1}^{0} \mathrm{e}$

Particle	Mass (u)
${ }_{1}^{1} \mathrm{H}$	1.007276
${ }_{2}^{4} \mathrm{He}$	4.001506
${ }_{1}^{0} \mathrm{e}$	0.000549

Identify the Variables

Find the mass defect, or mass lost, by subtraction.

Convert the mass defect into kilograms.

Convert the mass into energy, using $\Delta E=\Delta m c^{2}$.

$$
\begin{aligned}
& \Delta m=m_{\text {reactants }}-m_{\text {products }} \\
& \Delta m=4.029104 \mathrm{u}-4.002604 \mathrm{u} \\
& \Delta m=0.0265 \mathrm{u} \\
& \Delta m=(0.0265 \mathrm{u})\left(1.6605 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right) \\
& \Delta m=4.40 \times 10^{-29} \mathrm{~kg} \\
& \Delta E=\Delta m c^{2} \\
& \Delta E=\left(4.40 \times 10^{-29} \mathrm{~kg}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2} \\
& \Delta E=3.9550 \times 10^{-12} \mathrm{~J} \\
& \Delta E \cong 3.96 \times 10^{-12} \mathrm{~J}
\end{aligned}
$$

(a) The mass defect is 0.0265 u and the energy produced in this fusion is $3.96 \times 10^{-12} \mathrm{~J}$.
The energy released in the creation of 1.00 g of helium involves a conversion of units: the above is in J/reaction and

```
\DeltaE 1.00\textrm{g}}=\DeltaE\times\frac{1\mathrm{ reaction }}{1(\textrm{He nucleus)}}\times\frac{6.02\times1\mp@subsup{0}{}{23}(\textrm{He nuclei)}}{4.00\textrm{g}
\DeltaE1.00\textrm{g}}=3.96\times1\mp@subsup{0}{}{-12}\frac{\textrm{J}}{\mathrm{ reaction }}\times\frac{1\mathrm{ reaction }}{1(\mathrm{ He nucleus)}}\times\frac{6.02\times1\mp@subsup{0}{}{23}(\mathrm{ He nuclei) }}{4.00\textrm{g}
\DeltaE (.00\textrm{g}}=5.96\times1\mp@subsup{0}{}{11}\textrm{J
``` the goal is \(\mathrm{J} / \mathrm{g}\).

Note that 1 reaction (more correctly, series of reactions) consumes 4 H nuclei.
(b) The production of 1.00 g of He will release \(5.96 \times 10^{11} \mathrm{~J}\) (or, the amount of energy released in the production of He is \(\left.5.96 \times 10^{11} \mathrm{~J} / \mathrm{g}\right)\).

\section*{Validate the Solution}

The mass defect is positive, indicating an energy release.
Comparing the results of 8 and 9 , it's noted that similar amounts of energy are released in the production of helium from the two different fusion reactions, so the answer here is reasonable.

\section*{Chapter 21 Review}

\section*{Answers to Problems for Understanding}

\section*{Student Textbook page 935}
20. The energy change is \(6.72 \times 10^{-14} \mathrm{~J}\).
\[
\begin{aligned}
& m_{\text {reactants }}=2 m\left({ }_{1}^{1} H\right)=2 \times 1.007276 \mathrm{u}=2.014552 \mathrm{u} \\
& m_{\text {products }}=m\left({ }_{1}^{2} H\right)+m\left({ }_{0}^{1} e\right)=2.013553 \mathrm{u}+0.000549 \mathrm{u}=2.014102 \mathrm{u} \\
& \Delta m=m_{\text {reactants }}-m_{\text {products }} \\
& \Delta m=(2.014552 \mathrm{u}-2.014102 \mathrm{u}) \times\left(1.6605 \times 10^{-27} \frac{\mathrm{~kg}}{\mathrm{u}}\right) \\
& \Delta m=7.47225 \times 10^{-31} \mathrm{~kg} \\
& \Delta E=\Delta m c^{2} \\
& \Delta E=\left(7.47225 \times 10^{-31} \mathrm{~kg}\right)\left(2.998 \times 10^{-14} \mathrm{~m} / \mathrm{s}\right)^{2} \\
& \Delta E=6.7161 \times 10^{-14} \mathrm{~J} \\
& \Delta E \cong 6.72 \times 10^{-14} \mathrm{~J}
\end{aligned}
\]
21. The unknown nuclide is 144 -cesium, \({ }_{55}^{144} C s\).

The atomic number and the numbers of protons must balance on each side of the equation:
\[
{ }_{92}^{235} U+{ }_{0}^{1} n \rightarrow{ }_{37}^{90} R b+2{ }_{0}^{1} n+{ }_{55}^{144} \mathrm{Cs}
\]```

